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The performance of a noncoherently combined, multiple-mirror heterodyne receiver
is analyzed. It is shown that in the absence of atmospheric turbulence, the performance
of the noncoherently combined receiver is inferior to that of a monolithic, diffraction-
limited receiver with equivalent aperture area. However, when atmospheric turbulence is
taken into consideration, the efficiency of a monolithic aperture heterodyne receiver is
limited by the phase coherence length of the atmosphere and generally does not improve
with increasing aperture size. In contrast, the performance of a noncoherently combined
system improves with an increasing number of receivers. Consequently, given a fixed col-
lecting area, the noncoherently combined system can offer superior performance. The
performance of the noncoherently combined heterodyne receiver is studied by analyzing
the combining loss of the receiver SNR. It is shown that, given the collecting area, the
performance of the combined receiver is optimized when the diameter of each of the
individual receivers is on the order of the phase coherence length r, of the atmospheric

turbulence.

l. Introduction

Optical heterodyne reception [1] provides an alternative to
direct-detection schemes for free-space optical communication
applications. The ability to reject noncoherent background
radiation has made the heterodyne system very attractive for
applications where effective communication in the presence of
strong background interference is required. Furthermore, the
use of frequency and phase modulation schemes can remove
the peak power constraint that currently limits the application
of higher-order direct-detection pulse-position modulation
(PPM) schemes.

The heterodyne receiver is more complicated than the
direct-detection receiver. Accurate wavefront matching be-

tween the incoming signal and the local oscillator (LO) is
needed to ensure effective heterodyne reception. Imperfect
spatial mode matching can lead to destructive interference
and, consequently, to degraded system performance. For sys-
tems employing small receiver apertures, the required wave-
front alignment accuracy can be achieved relatively easily
because the wavefront distortions due to the receiving optics
and the atmosphere are negligible. For systems with large
collecting apertures, such as those envisioned for deep-space
reception, the difficulty in maintaining good optical surface
quality across the input aperture can present a serious prob-
lem in achieving effective heterodyne reception. The presence
of atmospheric turbulence further complicates the problem.
Turbulence-induced beam wander and beam spreading can
result in random fluctuations of the signal phase and ampli-
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tude that are difficult to compensate for. As a result, the
performance of a large-aperture receiver generally does not
improve with increasing collecting area.

Alternatively, a large effective aperture can be achieved
by combining the output signals from an array of smaller
receivers. These receivers can share a common support struc-
ture and tracking electronics to reduce construction cost.
Because each receiver is now smaller than the roughness scale
of the incoming signal wavefront, the local-oscillator output
can be accurately matched to the signal to achieve effective
heterodyne reception. Qutput signals from these receivers can
then be combined electronically to improve the detection sta-
tistics. Ideally, output signals from different apertures should
be combined coherently to optimize the overall receiver per-
formance. In such a scheme, turbulence- and optics-induced
phase shifts in the detected intermediate-frequency (IF) signals
are first compensated electronically, and the outputs from
these receivers are then added coherently. Since correcting the
IF phase distortion is similar to correcting the incoming phase
front, a coherent combining system can offer performance
comparable to that of a monolithic diffraction-limited receiv-
er. For systems with weak signal intensities, however, the low
signal-to-noise ratio (SNR) and rapidly varying atmospheric
conditions preclude the possibility of effective phase compen-
sation. The use of adaptive optics [2] in conjunction with an
artificial guide star [3] can compensate for the atmospheri-
cally induced wavefront distortion. However, such measures
are costly and complicated. An alternative is to noncoherently
combine the outputs of several subaperture receivers. In such
a scheme, the detected IF signal of each individual heterodyne
receiver is first noncoherently demodulated [4], and the out-
puts of these demodulators are then electronically combined.

This article presents a simple analysis of a noncoherently
combined heterodyne receiver. A simple model for the output
of the heterodyne receiver is first constructed. The perform-
ance of a noncoherently combined optical heterodyne re-
ceiver is then analyzed. It is shown that in the absence of
atmospheric distortions, the performance of a noncoherently
combined heterodyne receiver is worse than that of a single,
monolithic-aperture heterodyne receiver of equivalent aperture
size. This is because the noncoherent demodulation process
is more susceptible to noise when the signal power is weak.
Consequently, by subdividing the total collection area into a
number of smaller receivers, the signal power collected by
each receiver is smaller, thus leading to a degraded combiner
performance. When the atmospheric turbulence effect is
taken into consideration, however, the performance of the
monolithic-aperture receiver is limited by the phase coherence
length of the atmosphere. As a result, subdividing the aperture
and noncoherently combining the subaperture outputs can
actually lead to a significant improvement in performance. A
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simple analysis shows that the combiner SNR is optimized
when the diameter of the individual subaperture is on the
order of the phase-coherence length of the atmosphere.

Il. Heterodyne Reception Technique

The structure of a simple dual-detector heterodyne receiver
is shown in Fig. 1. The incoming signal is first spatially mixed
with a strong local oscillator. The combined signal is then
photodetected. The mixing of the signal and LO generates an
intermediate frequency term at each detector output which
oscillates at the beat frequency wyp between the signal and
LO. The IF signal output of the dual-detector heterodyne re-
ceiver can be modeled as [1]:

S = (e—;’zg)%/WD(r)A;(r)

X ;TLO(r) cos (wIF[ +¢(r) - ¢L0(r)) dr +n(t)
(1)

where (en/hv) is the responsivity of the detector, G is the
detector gain, z; is the impedance of the photodetector,A_'S(r)
and ELO(r) are the amplitudes of the signal and LO electric
fields, ¢g(r) and ¢; o(r) are the signal and LO phases, wip is
the IF frequency, and n(t) is the additive noise at the detector
output. The function Wp(r) in Eq. (1) defines the area of the
receiving aperture, i.e.,

1 if [r| <

Wy (r) = )
0 if [r|>

Y le]

(Sl lw]

In writing Eq. (1), it was assumed that the mixing process
took place at the receiver input aperture. Alternatively, the
heterodyne process can be described by the diffraction pat-
terns of the signal and LO over the receiver focal plane. These
two descriptions are completely equivalent for systems em-
ploying perfect receiving optics. For systems employing less-
than-perfect optics, however, the description given by Eq. (1)
must be modified to include the optics-induced perturbations
in the signal.

The noise current n(z) at the receiver output consists of the
signal shot noise and the detector thermal noise. In the limit of
a strong LO, the shot noise term usually dominates the receiver
thermal noise. For all practical purposes, this LO shot noise
can be modeled as an additive white Gaussian noise (AWGN)
with power spectral density
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where P} o is the LO power. As a result, the optical hetero-
dyne channel can often be modeled effectively as a Gauss-
ian channel [1]. Demodulation techniques for signals in the
presence of white Gaussian noise have been studied exten-
sively [4]. In general, the IF signal can be demodulated either
noncoherently or coherently. Noncoherent demodulation is
often accomplished with the use of an envelope detector
shown in Fig. 2. The output of the envelope detector can be
written as

u= [ =5 [ +n R U n )] ()
2012V

where
4, = (hi;’;f / W, () A(r)
X Apo(r) cos(@5() - 0 5@) ) (4b)
4, = ( ,f,’fzi) f W () A (r)
X A o@sin(dg(m -0 oM)dr  (40)

and 7., ny are the Gaussian quadrature noise components with
zero mean and variance equal to o%/ = 2N,/T,. The probability
distribution of the detected envelope is known to be Rician
distributed with density function [4]

p,(w) = 2ue“("+“2)10(2u \/F) (5)
where
A2 +42
6 - e———e—
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PSPLO (420)

X [Ag(n) X AL o@] A E) X A ()]

X cos (qbs(r) - o0 - ¢S(r') + ¢>L0(r')) drdr’
enPSTs
= Mhet\” v (6)

The factor 7y, in Eq. (6) is known as the heterodyne effi-
ciency of the receiver, and the quantity § is the signal-to-noise
ratio of the envelope detector which can be interpreted as the
number of signal photons incident on the receiver aperture
multiplied by the heterodyne efficiency. For systems with per-
fect spatial mode matching, the heterodyne efficiency is equal
to 1. When the spatial modes are not properly matched, the
contribution to the IF signal from different parts of the
receiver aperture can interfere destructively and result in re-
duced heterodyne efficiency.

In addition to the noncoherent demodulation scheme, the
IF signal can also be coherently demodulated [4]. In this
scheme, a local reference carrier is synchronized to the IF
carrier. The received IF signal is then mixed with the refer-
ence carrier and the resulting baseband signal is matched-filter
detected. In the absence of time-varying perturbations in the
signal amplitude and phase, the coherent demodulation
scheme can result in superior receiver performance. However,
the coherent demodulator requires the generation of a local
reference signal that is synchronized to the incoming IF car-
rier and is therefore more complicated. Furthermore, because
of the rapidly varying atmospheric condition and the weak
signal power expected over a deep-space link, carrier phase
tracking can be very difficult to accomplish. The use of the
noncoherent demodulation scheme eliminates the need to
retrieve the IF signal phase and hence considerably simplifies
the design of the receiver. Consequently, only the noncoher-
ently demodulated heterodyne receiver will be included in
the present analysis.

lll. Noncoherently Combined Heterodyne
Receiver

The performance of a single-aperture heterodyne receiv-
er has been studied for free-space communication applica-
tions [5]. In some cases, achievement of an effective com-
munication link requires the use of a large effective receiving
aperture. However, the high cost of constructing a single
monolithic-aperture heterodyne receiver with a large col-
lecting area can be prohibitive because of the stringent demand
on the quality of the optical surface. Furthermore, high-
bandwidth adaptive optics must be used to compensate for
the atmospherically induced wavefront distortion if reception
inside Earth’s atmosphere is desired. Such a measure can
further increase the receiver cost. Alternatively, the perform-
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ance of the communications link can be improved by electron-
ically combining the output currents from several spatially
separated heterodyne receivers. The block diagram of such a
receiver is shown in Fig. 3. For the analysis, it will be assumed
that an array of identical receivers is used to detect the incom-
ing signal. These receivers can share a common support struc-
ture to reduce the construction cost.

Because the individual receivers are identical, the output
signals from these receivers can be assumed to be identically
distributed. Furthermore, the LO shot noise can be modeled
as independently distributed. In the limit where the number
of receivers is large, the Central Limit Theorem can be used
to model the combiner cutput as Gaussian distributed. The
error performance of this combined receiver can therefore
be characterized by the combiner signal-to-noise ratio p,
which is given by

_ (E[s|signal] - £ [s|no signal] )2
c var (s[signal) + var(s|no signal)

(7

In Eq. (7), s = Zu, is the sum of individual demodulator out-
puts, and £ [s|X] and var (s|X') denote the conditional mean
and variance of the variable s, subjected to the condition X,
respectively. For a binary Gaussian channel with SNR p,, the

bit error rate is [4]
o
1 ¢
— —_ 8
3 erfc( 3 ) (3)

Since the demodulator outputs {u;} are modeled as indepen-
dent and identically distributed random variables, the mean
and variance of s can be evaluated by summing the mean and
variance of the individual demodulator outputs, and the com-
biner SNR can be simplified to

BER =

(£ [u|signal] ~ E [u] no signal] )2

pe = NX var (u[ signal) + var (u [ no signal)

€))

where N is the number of combined subaperture receivers.
Equation (9) shows that for systems employing an array of
identical heterodyne receivers, the performance improves with
increasing number of receivers.

By integrating with respect to the probability density func-
tion given in Eq. (5), the first two moments of the noncoher-
ent demodulator output can be written as

Efu] = ge"ﬁlﬁ“lﬁ/ll,ﬁ) (10)
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E[W*] = (1+p) (11)

The function ;F(a,b,c) is the degenerate hypergeometric
function. The combiner SNR can then be evaluated by substi-
tuting the demodulator mean and variance calculated from
Egs. (10) and (11) into Eq. (9). For § << 1, the degenerate
hypergeometric function in Eq. (10) can be expanded in a
power series:

2
Efu] = ‘/TE{H%-‘;—J, B<<1 (12a)

and the resulting combiner SNR is given by

Ji]
42 16

ET

p. = NX

c

, K1

(12b)

When § >> 1, on the other hand, an approximation to the
mean demodulator output can be found by Taylor expanding
the square root in Eq. (4a) and taking the expectation:

Elu] ~ VD {1 L A P
8(1+p8)
(13a)
The resulting combiner SNR is therefore
[,/—Hﬁ(l Sy v_FT
s(1+p)?) 2
p, ~ NX , B>>1
1- L 1+28
4 4(1+0)
(13b)

Equations (12b) and (13b) show that for a system consist-
ing of a fixed number of receivers, the performance can be
improved by increasing the SNR of the individual receivers.
This can be accomplished by increasing the aperture of the
individual receivers or by increasing the signal power. For a
fixed size of individual receiver apertures and incoming signal
intensity, the combiner SNR increases linearly with the num-
ber of receivers N. However, for a system with a fixed overall
collecting area, subdividing the receiving area into several
smaller receivers can result in a corresponding decrease of the
individual receiver SNR. Therefore, even though the combiner
SNR depends explicitly on the number of receivers NV, the



reduction in § with increasing &/ will actually lead to a reduc-
tion in the combiner SNR. This fact is demonstrated in Fig. 4
where the combining loss, which is the ratio of the combiner
SNR to the SNR of a single monolithic aperture of equivalent
size, is plotted against the number of receivers. The figure was
generated with no turbulence-induced degradation taken
into account. The parameter py is the SNR of a monolithic
receiver.

Note that at small NV, the combiner SNR decreases slowly
with an increasing number of aperture segments. When the
amount of signal power received over each aperture decreases,
however, the efficiency of the noncoherent demodulator
decreases and the combining loss increases rapidly. This is be-
cause of the nonlinear nature of the noncoherent demodula-
tion process. At very low signal powers, the noise contribution
to the demodulator output is more significant and, as a result,
the efficiency of the demodulator decreases with decreasing
signal power. In other words, given the overall receiving area,
there is a penalty for subdividing the aperture and then non-
coherently combining the demodulator outputs. For a system
with py = 20 dB, the noncoherent combining loss when the
aperture is subdivided into 1000 receivers is approximately
15 dB. This combining loss decreases with increasing signal
power. It should be noted that this combining loss is due to
the noncoherent demodulation process. For systems employ-
ing coherent combining schemes, the combiner performance
will depend only on the total collecting area, and thus will not
degrade with an increasing number of receivers.

IV. Atmospheric Turbulence Effect

The above analysis showed that, in the absence of atmo-
spheric turbulence, the performance of a noncoherently com-
bined optical heterodyne receiver is inferior to that of a
monolithic-aperture system. In the presence of atmospheric
turbulence. both the amplitude and phase of the incoming
signal wavefront will be distorted. Under the condition of
weak turbulence, the log amplitude 2(r) and the phase ¢(r) of
the optical signal, after propagating through the atmosphere,
can be modeled as stationary, Gaussian random processes [5].
The autocorrelation of the amplitude and phase can be charac-
terized by the atmospheric structure function &£ (rr') which
can be written as

Lx) = D(cx)+ D (rr)

(14)

Qo) - 22 )+ C1o(r) = ()12

The angle brackets in Eq. (14) denote the ensemble average.
Tatarski [6] showed that, under the condition of weak turbu-

lence, the structural function of the atmosphere can be charac-
terized by its phase coherence length rg as

D(rx) = 6.88(Ir ~r'l/ry)*/? (15)

Under normal viewing conditions, 7y is typically between 5
and 30 cm, and at a few outstanding sites, such as Mauna Kea,
an ry in excess of 40 cm can occasionally be observed.

The effect of turbulence on the performance of a hetero-
dyne receiver is to reduce the heterodyne efficiency. Since the
atmospheric condition varies dynamically, the instantaneous
IF signal amplitude and phase vary continuously. If the inte-
gration time is much shorter than the characteristic time in
which the atmospheric properties change significantly, how-
ever, it is reasonable to model the atmospheric turbulence as
“frozen” over the integration period. In this case the time
dependence of the signal phase and amplitude can be ignored,
and the receiver SNR can be described adequately using Eq.
(6). The expression for the SNR can be further simplified by
noting that, under the condition of weak turbulence, the
structural function & (rt') is dominated by the phase struc-
tural function @,(rr"). Over a sufficiently large aperture, the
fluctuation in signal amplitude (scintillation) will be averaged
so that its effect on the receiver SNR can be ignored. Under
these assumptions, the SNR of the noncoherent demodulator
in Eq. (6) can be written as

1 b i@ (D=0 (r') ,
B = (By4g) ijWD(r)WD(r e S 5 Tdrdr
R

(16)

where 8q = (nPgT /hvdAg) is the number of signal photons
received per unit area or, equivalently, the receiver SNR per
unit area. In writing Eq. (16), it has been assumed that the LO
can be approximated by a plane wave and that the amplitude
fluctuation of the signal can be ignored.

The statistical properties of the heterodyne SNR inside the
atmosphere were first studied by Fried [7],[8]. By taking the
expectation of Eq. (16) with respect to the signal phase and
using the approximation that the signal phase is a zero-mean,
Gaussian random process with structure function @¢(r,r'),
Fried successfully calculated the average receiver SNR § in the
presence of turbulence as [7]

_ 7"'2

B = By ¥(Diry) (17)
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where

> 5/3 5/3
o) = =2 f Sleos™ u-u(1-u?)!2) 34T gy
0

(18)

Figure 5 is a plot of the function y(D/ry) versus the diameter
of the receiver aperture Dfry. For D/rq << 1, the function
Y(D/ry) increases as the square of the aperture diameter. For
Dfro >> 1, the value of y(D/ry) approaches 1 asymptotically.
Note that when D = ry, the SNR is only 3 dB below what can
be achieved with D — . As a result, a further increase in the
aperture size will only result in a marginal increase in the
receiver SNR, and very little can be gained by increasing the
diameter of the receiver aperture beyond 7.

Equation (17) shows that the limiting performance of a sin-
gle monolithic-aperture heterodyne receiver inside the atmo-
sphere is equivalent to that of a single aperture with diameter
ro in the absence of turbulence. In addition to limiting the
average SNR, the presence of atmospheric turbulence also
induces a severe fluctuation in the detected SNR. By squaring
the expression for § in Eq. (16) and taking the expectation
with respect to the signal phase, the mean-square receiver SNR
can be written as

(62> = Bg;:_zwa(rl)WD(rZ)wD(r3)wD(r4)
R

y (ei(cbs(rl)—és(r2)+¢g(r3)-—¢s(r4)) )

X dr dr,dr,dr (19)
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Equation (19) is very difficult to evaluate in a closed form.
However, by applying Fried’s approximation, a simple upper
bound on the mean square SNR can be given by (Appendix A)

173
5/3. .2
-
X (rﬂ)‘1 [ Kowpwe L0 4y
0

(20a)

4

5/3 2
0.461(D/ry) Ty
(Fr< e 0 ag( )
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where

i Q 1 1
Kw) = dp | dqf ( p+ §W/D,Q) f (p —§W/D,q)
0 0

P

1 -w/2D

1/2
]

Q = [1 - (w/2D)?

fe,p) = cos™! [(x* + p2)12]

S NN e (205)

Equation (20a) can be evaluated numerically. The result,
which is shown in Fig. 6, provides an upper bound for the
mean square SNR fluctuation. Note that the upper bound
diverges exponentially for D/ry 2 1. Also shown in Fig. 6 are
the results of a Monte Carlo simulation of the mean square
SNR. In contrast to the diverging upper bound, the simulation
data show that the mean square SNR actually converges at
Djrq >> 1. This convergence can be argued as follows: for
Ity = ;1 >> rg, the phase of the incoming signal at r; and I
will be completely uncorrelated so that the expectation of the
exponent in Eq. (19) is negligible. By applying a simple geo-
metrical argument, it can be reasoned that the integrand in
Eq. (19) is negligible except whenr; ~r, and ry ~r,, or when
r; ~r3 and ry =~ ry. Consequently, only two of the four spa-
tial integrals increase with increasing D, and the integral in
Eq. (19) increases only as D?. As a result, the mean square
SNR converges as D — oo,

When the effect of turbulence is taken into account, the
performance of the noncoherently combined heterodyne
receiver depends on the actual probability distribution of 8.
Given Py(B), the probability distribution of 8, the first two
moments of the noncoherent demodulator can be calculated
by averaging Eqgs. (9) and (10) over the distribution of 8 as

VT

E[u]=[) Te‘51F1(3/2,1,B)PB(ﬁ)d{3 (21a)

Efu’] =[ (1+H)B@B)ds = 148 (21b)
0

A detailed description of the distribution of § is needed to
evaluate these integrals. Unfortunately, due to the complexity
of the expression shown in Eq. (16), the statistical properties
for B are very difficult to characterize. However, when the vari-
ance of B is small, a simple approximation for the mean de-



modulator output can be found by expanding the conditional
expectation of the demodulator output in a Taylor series
(Appendix B)

E[u]

ﬂ ) \/TEe—alF1(3/2’l B) Fy(B) B

14

-\/T’Te-ﬁlfl(zz/z,l B) —\T/——ge'EIFI(3/2,3,E) o
(22a)

Because the second derivative of the conditional average of the
demodulator output is always negative, it can also be shown
that the average demodulator output is bounded from above
by (Appendix B):

Efu] < —\/;e‘ﬁ_lFlO/z,l,@)

(22b)
For the analysis of noncoherently combined heterodyne re-
ceivers inside the atmosphere, it will be assumed that the indi-
vidual receivers are spatially separated by a distance much
greater than the phase coherence length rg of the atmosphere
so that the output of these receivers can be modeled as inde-
pendent and identically distributed. Therefore, by substituting
the expressions for the first two moments of the demodulator
output from Egs. (21b) and (22b) into Eq. (7), an estimate of
the combiner SNR can be found for a noncoherently com-
bined heterodyne receiver inside atmosphere. Since Eq. (22b)
presents an upper bound for the mean demodulator output, it
follows from Eq. (7) that the combiner SNR derived is an
upper bound for the actual combiner SNR. Similarly, by sub-
stituting Eqgs. (21a) and (22a) into Eq. (7), an approximation
to the combiner SNR can be derived. If we further substitute
in the upper bound of the variance of § given in Eq. (20), the
resulting combiner SNR will be an approximate lower bound
of the actual combiner performance.

Given the expression for the combiner SNR, the perform-
ance of the combined receiver can be investigated. Figure 7
is a plot of the combiner SNR versus the total receiving area
for a noncoherently combined heterodyne receiver with sev-
eral values of V, the number of receivers. The incoming signal
intensity B and the atmospheric coherence length rqy are
fixed. Also plotted in the figure is the SNR for a coherently
combined heterodyne receiver with no turbulence. This curve
represents the best achievable performance for a heterodyne
receiver at a given receiving area. Note that when the total
collecting area is small, the performance of the combined sys-
tem degrades with an increase in the number of receivers.
This is because the efficiency of the noncoherent demodula-
tion process degrades rapidly with decreasing signal power.
However, as the diameter of the receiver aperture increases

beyond ry, the SNR of the single-aperture receiver begins to
saturate because of the atmospheric turbulence. On the other
hand, for systems employing a number of receivers, the com-
biner SNR continues to improve until the diameter of each
receiver is greater than ry. Therefore, for a system which
requires a large collecting area, the performance can indeed
be improved by combining the outputs from several receivers.
It should be noted, however, that despite the improvement
in combiner performance with an increasing number of re-
ceivers, the performance of the noncoherently combined re-
ceiver is still far inferior to that of a coherently combined sys-
tem. In fact, for the given signal intensity assumed in Fig. 7,
the noncoherently combined receiver suffers more than 20 dB
loss in the receiver SNR.

It is interesting to evaluate the combining loss versus the
number of receivers. Plotted in Fig. 8 is the combining loss of
a noncoherently combined heterodyne receiver versus the
number of receivers. The total collecting aperture is fixed so
that an increase in the number of receivers corresponds to a
decrease in the diameter of the individual receiver apertures.
For systems employing a large number of small-aperture re-
ceivers, the loss due to noncoherent demodulation dominates
so that the combining loss increases with an increasing number
of receivers. For systems using a small number of receivers, on
the other hand, the SNR of each receiver is limited by the
coherence length of the atmosphere, and hence the receiver
performance improves with an increasing number of receivers.
Consequently, given the overall collecting area and the phase
coherence length r(, an optimal number of receivers can be
found which maximizes the combiner SNR. It should be
noted, however, that Fig. 8 was generated by fixing the total
collection area of the combined receiver. When the size of the
individual receiver is fixed, it follows directly from Eq. (7)
that the performance of the combined receiver improves line-
arly with V. It is also interesting to investigate the dependence
of combining loss with different values of r(, the phase coher-
ence length. Figure 9 is a plot of the combining loss versus the
diameter of the individual aperture at different values of rg.
The total collecting area of the combined receiver is again
assumed to be equivalent to that of a monolithic receiver with
a 10-meter diameter. It is seen that the performance of the
combined receiver is optimized when the diameter of the indi-
vidual receiver D is approximately equal to the phase coher-
ence length . The combining loss increases rapidly when the
size of the individual aperture becomes much larger than 7.

V. Conclusions

Combining outputs from a number of small-aperture heter-
odyne receivers can significantly reduce the cost of construct-
ing a receiver with a large collecting area. In principle, output
signals from these small-aperture receivers can be combined
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to improve the detection statistics. Compared to systems
employing a single, diffraction-limited aperture, however, the
noncoherently combined receiver suffers from the combining
loss due to the noncoherent demodulation process. This com-
bining loss increases rapidly with an increasing number of
aperture segments. The loss due to noncoherent combining is
worse for systems with weak incoming signals. For systems
with a large number of segments (N =~ 100), the combining
loss is on the order of 15-25 dB for systems with an effective
single-aperture SNR of 10-20 dB. The combining loss is
smaller for systems with higher signal powers.

When the atmospheric turbulence is taken into considera-
tion, however, the performance of a monolithic-aperture het-
erodyne receiver is limited by the size of the phase-coherence
cell of the atmosphere. As a result, increasing the size of a
monolithic aperture will not result in a corresponding improve-
ment in system performance. For such a system, the noncoher-
ently combined receiver can provide a significant improvement
in system performance. The analysis showed that, given the
size of the overall collecting aperture, the performance of the
receiver is optimized when the diameter of the individual sub-
aperture is equal to the phase coherence length of the atmo-
sphere 7. Increasing the size of the individual aperture beyond
ro can result in a saturation of individual SNR. On the other

hand, reducing the subaperture to a size smaller than r will
increase the combining loss and hence degrade the system
performance.

It should be noted that for large N, the combining loss of
the noncoherently combined heterodyne receiver is due pri-
marily to the inefficiency in the noncoherent demodulation
process. It was assumed throughout this article that the coher-
ent combining is ineffective due to the weak signal power and
the rapidly varying atmospheric condition. For systems in
which this assumption can be relaxed, the coherent combining
scheme can be used to improve receiver performance signifi-
cantly. One such system is the large-aperture heterodyne re-
ceiver in space. Although the alignment errors between indivi-
dual receivers can induce random phase shifts between the
detector outputs, these phase errors are fixed and can there-
fore be accurately measured and properly compensated in the
absence of rapidly varying atmospheric conditions. Another
scheme is to use the adaptive optic technique to correct
for the atmospherically induced wavefront distortion. The
required high signal power can be provided through the use of
natural or artificial guide stars [3]. Receiver performance
comparable to that of a monolithic, diffraction-limited receiver
can be obtained, at least in principle, with the use of a coher-
ent signal combining scheme.
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Appendix A

Derivation of the Mean Square Receiver SNR

Given the expression of § in Eq. (16), the mean square
SNR, {2, can be written as

%) = 82— [Wyte).. . Wy,)
AR

X dr1 d|-2dr3a?r4

(A-1)
The expectation over ¢g(ry) can be evaluated by using the
assumption that ®g(ry ryr3r4) = d5(ry) - dg(ry) + og(ry)
- ¢s(rq) is a zero-mean Gaussian random variable. The result-
ing expectation value of the exponential is given by

(6% = 53/%2 Wiy (e W (6 )W (e W ) €

R

‘o ;1/2[-%( 1y=1y D=L irymry 0+ D (ry =1y 0+ L H—1

172

4 s/3 5/3
16D 3.44/r )3 =tuy—uy 1S3 Cjuymu, i
- 5(2) ( )fwl(ul)Wl(“z)wl(“3)w1(“4)6’ 0 179 3=y

3.44(D/rp) "3
Xe

where we have carried out the substitution of variables, ;=
Du;, and applied the 5/3 power law of the phase structural
function to factor out the term (D/rg)/3.

The mean square SNR given in Eq. (A-4) is very difficult to
evaluate numerically. However, a simple upper bound of the
integral can be obtained by using the fact that since |u;| <1/2,
ju; - ujl = u; < 1, and the 5/3 power of U; can be bounded
from above and below by

[—iul—u4 15/3—1u2—u3 \5/

(eiws(rl Ly ,r4)) - e—‘ad’ 2 (A2)

where 03, is the variance of ®g(r;,ry,r3,r4). Equation (A-2)

can be further simplified by realizing that

@-b+c-d)? = (@a-b+@-d)2+(b-c) +(c-d)?

—@-c)? -(b-d)? (A3)

and that the expectation of the phase-difference square is
simply the phase structural function, i.e., @¢(r1 -rp) =

(log(ry) - ¢5(ry)12 ). By substituting Eq. (A-2) into Eq. (A-1),
the mean-square SNR can be written as

1/2[—%(Irl—rzl)-%(!ra—r“l)]#

j dr,drydrydr,

5/3]

/3]

3 5/3 5
+lu,~u, | tiua—u, |
173 274 du, du,du,du
1772773774

(A4)

5
Wl < w3 < ul+ (5) - (5)6 = 42 +0.06698

0<u<xl1
(A-5)
The bounds in Eq. (A-5) are derived by solving for the maxi-

mum and minimum of the function y(x) = x5/3 - x2. By
substituting the upper bound into Eq. (A-4) for terms with
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positive exponents and the lower bound for terms with the
negative exponent, a simple upper bound for the mean square
SNR can be easily derived,

5/3 2
0.461(D/r) wr
2y <e 0 85 (4—°j ¢D/ry)  (A-6)
where
oirg = 26 (BN [w ). wy(
¢(DJr, vl (U)W ()
vl 0
5/3 2
[=@Irg» " uy~uy*ug-u, 1]
Xe dulafuzdu_,’a'u4
(A-7)

Since the integral involves only a single variable of the form
w=uy ~uy +uy —uyl 2, the 4-fold integral in Eq. (A-7) can
be collapsed into a single one-dimensional integral of the form

{7]:
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5/3.2
21er(w)we“’ W dw (A-8)
where
i e 1 1
K(w) =f dP/ dqf(p +§w/D,q)f(p _iw/D,q)
0 0
P=1-w/2D
0= (1-wwy '’
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Appendix B
Derivation of Eq. (22)

Given the probability distribution of 8, Pﬁ(ﬁ), the expecta-
tion value of the noncoherent demodulator output is given by

Elu] = ﬁ) " F®) BB) B 1)

where f(8) = E[ulB] = (\/W_/Z)e—ﬁlFl(3/2,l,6) is the condi-
tional expectation of u. The integral in Eq. (B-1) depends on
the distribution of § and hence is in general difficult to evalu-
ate. However, when the distribution of § is sufficiently narrow,
we can expand f(3) around the mean SNR f as

i ~ 1@+ @6-p+ L 6-p2e . B2

The derivatives of the function f(8) can be evaluated by taking
the derivatives of the degenerated hypergeometric function,
and applying the recurrence relations:

@) _ d (VT )
2l m(—2— e 1F1(3/2.1,ﬁ)’
= %’7 e™? F (3/22,8) = 0 (B-3)

2
ddggﬁ) - —lé—; 6-61F1(3/2.3,ﬁ) <0 (B-4)

By substituting the Taylor expansion in Eq. (B-2) into
Eg. (B-1), the expectation value can be written as

El) ~ L (roer@e-pe %(‘”(a—é)%)Pﬁ(ﬁ)dﬁ

(B-5)

where the first order term vanishes because of the fact that

6 = [ BP,(6) dB
0

To show that £(f) is an upper bound of Eq. (B-1), note that
since the second derivative of f(8) is less than zero for all §,
the function f(B) is always less than the linear term g(8) = f(B)
+ £(B)(8 - B). Consequently, f(B), which is derived by substi-
tuting g(B) for f(B) in Eq. (B-1), is always greater than the
actual expectation value.

(B-6)
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